Requires a learning network (optimization)!
Professional robot, which implemented trading strategy using neural networks. Used multi-layer fully connected feedforward networks MLP (multilayer perceptron).
The ability to learn is the main feature of the brain. Artificial neural networks for learning refers to the process of configuring the network architecture (structure of connections between neurons) and synaptic weight (affecting signals coefficients) for the efficient solution of the problem. Usually the training of the neural network is carried out on a sample (historical data). As the learning process that occurs on some algorithm (used for training optimization genetic algorithm), the network must become better and better in responding to input signals.
It remains only to check how accurate optimized parameters make it possible to forecast the future. For that end a phased check of results is applied. An example is given in comments together with optimization settings.
Indicator RSI are analyzed at the beginning of the current bar. Results of 10 bars of each indicator fall on input of the neural network. The weighting factors are formed separately for buys and sells. The network is trained on data from the indicators and, depending on the signal level at the output of the neural network, there may be 4 teams (at TypeDual = true): open / close a buy order, open / close a sell order. And depending on it the robot will open a BUY or SELL and keep the deal until the closing signal is received from the network. There is also a mode of neural network with two outputs (when TypeDual = false): first - the entrance to buy with automatic exit from the market, the second - input on sell with automatic exit from buy.
Expert correctly handles errors and works reliably with a capital from 100 USD. Expert uses the basic concepts: breakeven, trailing stop, stop loss and take profit, as well as the closing on the opposite signal, closing the signal and the correct calculation of risk.
Main parameters:
The following fields relate to the RSI indicator, by analogy, all subsequent indicators:
If for any reason you do not like the purchased program, you can request a refund within 30 days from the date of purchase. You can also make an exchange for any other product at an equal cost or by paying the difference.
Simply send a request for refund or exchange with your order number by email: support@fx-market.pro.
Refund requests received more than 30 days after purchase will be rejected.